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SUMMARY

This paper presents a new three-dimensional lattice Boltzmann interface capturing method for incom-
pressible flows following the work of Zheng et al. (Phys. Rev. E 2005; 72:056705). As shown in the paper,
the fourth rank isotropic property of the lattice tensor is not needed for interface capturing. As a result,
a new D3Q7 (D3 means three dimensional, Q7 means seven velocity bits) lattice velocity model and its
associated equilibrium distribution functions are proposed in the paper. The proposed model is validated
by comparing its numerical results with those of an existing lattice Boltzmann interface capturing model
(J. Comput. Phys. 2004; 198:628–644) and three-dimensional direction split flux-corrected transport
method (Int. J. Numer. Meth. Fluids 1997; 24:671–691). Numerical results showed that the present model
performs better than the existing methods in capturing the interface. It greatly improves the computational
efficiency and saves at least half of the memory as compared to other lattice Boltzmann interface capturing
models. Copyright q 2007 John Wiley & Sons, Ltd.

Received 24 February 2007; Revised 17 May 2007; Accepted 27 May 2007

KEY WORDS: interface capturing; three dimensional; lattice Boltzmann; incompressible flow

1. INTRODUCTION

The dynamics of multiphase flows has many practical applications in engineering, such as in liquid–
vapor flow and oil–water flow. Due to complexity of the problem, the experimental study is usually
very difficult. On the other hand, as the development of computers and numerical algorithms, the
numerical study of multiphase flows plays a more and more important role. In general, most of
multiphase flows are three dimensional and different phases may coalesce and detach from each
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other. Thus, accurate capturing or tracking of the three-dimensional interface is very important for
multiphase flow applications.

Most of the existing methods use the Eulerian frame to track or capture the interface since
they do not need to move the mesh and are easy to treat coalesce or breakup among different
phases. The exact locations of the interface are determined by solving the transport equations.
The main differences of various methods lie on the indication function and difference schemes
for discretization of the convection term. For example, the volume of fluid (VOF) method uses
the volume fraction as an indication function. To discretize the convection term, most of the VOF
methods follow the original donor acceptor scheme [1]. This scheme combines the first-order
upwind and downwind fluxes to ensure stability and minimize the diffusion [2]. The interface at
each step is reconstructed from the volume fraction. However, the reconstruction of the interface
may not be unique and depend on the reconstruction scheme. To improve the performance of
the interface tracking, some higher-order reconstruction schemes (e.g. [3, 4]) were developed. It
is indicated that most of these schemes are very complicated and not easy to be extended to the
three-dimensional case. In contrast, the level set method (LSM) [5] utilizes a level set function to
indicate the interface. One of its advantages is that the level set function varies smoothly across the
interface while the volume fraction is discontinuous (step function). As compared to the volume
fraction, it is just an indicator and has no physical meaning. Thus, the function does not need to
keep conservation. The drawback of LSM is that, when large topological changes occur around the
interface, it requires a re-initialization procedure to keep the distance property. This may violate
mass conservation for each phase or component [6]. Its extension to the three-dimensional case is
also not easy.

Apart from the VOF and LSM, another efficient method for capturing the interface is the phase
field method (or called diffuse interface method). It uses the convective Cahn–Hilliard equation
[7], which has an explicit anti-diffusivity term, to capture the interface. The anti-diffusivity leads
to thin, well-defined interfaces. A major advantage of the phase field method is that no special
convective algorithms are required for the interface equation. Calculations have been carried out
successfully even using the standard central difference schemes. Its main problem is that some
additional efforts need to be put in the approximation of the fourth-order derivatives in the diffusion
term. This difficulty can be overcome in the context of lattice Boltzmann method. The inclusion
of the diffusion effect in the collision term is natural in the lattice Boltzmann method. Currently,
there are many attempts in this aspect. However, most of them cannot accurately recover the Cahn–
Hilliard equation. For example, the original free-energy-based LBM [8] recovers the Cahn–Hilliard
equation with some additional terms. Inamuro et al. [9] recovered a similar equation where the
physical background is not so clear, and there is one additional time derivative term which may
violate the Galilean invariance. He et al. [10] recovered the Cahn–Hilliard equation with some
additional terms. Besides, the mobility in their method is related to the density. Lee and Lin [11]
used the same method as that of He et al. [10] but replaced the order parameter by the density.
The numerical discretization of the convection term is introduced to enhance the stability. To
improve the lattice Boltzmann method for interface capturing, Zheng et al. [12] recently proposed
a new method which can recover the Cahn–Hilliard equation without additional terms and can
keep the Galilean invariance. In this method, the modified lattice Boltzmann equation [13] is
adopted to remove the time derivative related term. In addition, it does not require the fourth-rank
lattice tensor of the discrete velocity model to be isotropic. Thus, the D2Q5 discrete velocity
model (D2 means two dimensional, Q5 means five velocities) can be used in the two-dimensional
applications. This greatly reduces the computational effort. In this paper, we follow the same idea of
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Zheng et al. [12] to propose a three-dimensional lattice Boltzmann interface capturing method. In
the method, a new D3Q7 lattice velocity model and its associated equilibrium distribution functions
are presented. As compared to the conventional D3Q15 and D3Q19 models, the use of D3Q7 model
can greatly improve the computational efficiency in the three-dimensional applications.

The paper is organized as follows. Section 2 proposes the new interface capturing method for
the three-dimensional case. It recovers the convective Cahn–Hilliard equation to the second order
of accuracy without additional terms. The proposed method will then be verified and applied to
some test cases in Section 3. The numerical results will be compared with those of the existing
lattice Boltzmann interface capturing methods and the direction split FCT-based VOF method.
Finally, the conclusion will be drawn in Section 4.

2. METHODOLOGY

As stated in the Introduction, LBM can be applied to solve the convective Cahn–Hilliard equation
[7] which involves not only the convective term but also the diffusion term. However, most of
the existing lattice Boltzmann methods cannot completely recover the corresponding LBE to the
convective Cahn–Hilliard equation shown as follows:

�t� + ∇ · (�u) = �M∇2�� (1)

where �M is called the mobility and �� is the chemical potential.
In this paper, we intend to propose a new three-dimensional lattice Boltzmann model which can

recover the Cahn–Hilliard equation without any additional terms by following the work of Zheng
et al. [12]. To achieve this, the modified lattice Boltzmann equation [13] is adopted:

fi (x + ei�, t + �) = fi (x, t) + (1 − q)[ fi (x + ei�, t) − fi (x, t)] + �i (2)

with BGK approximation [14] of the collision term,

�i = f (0)
i (x, t) − fi (x, t)

��
(3)

where fi is the distribution function, �� is the dimensionless single relaxation time, ei is the lattice
velocity, and q is the constant coefficient.

The macroscopic variable (order parameter) � is evaluated by

�= ∑
i

fi (4)

By using Taylor series expansion truncated to the second-order term, Equation (2) can be rewrit-
ten as

�(�t + ei · ∇) fi + 1
2�

2(�t + ei · ∇)2 fi

+ (q − 1)[�(ei · ∇) fi + 1
2�

2(ei · ∇)2 fi ] + O(�3) = �i (5)
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Furthermore, by applying the Chapman–Enskog expansion to Equation (5),

fi ≈ f (0)
i + � f (1)

i + �2 f (2)
i

�t ≈ ��t0 + �2�t1

�x ≈ ��x1

� ≈ �(0) + ��(1) + �2�(2)

(6)

where the physical meaning of � is the Knudsen number, we can show that if the distribution
function satisfies the following conservation laws

∑
i

f (0)
i = � (7)

∑
i

f (0)
i ei� ≡ 1

q
�u� (8)

∑
i

f (0)
i ei�ei� = ������ (9)

and the coefficient q is set to be

q = 1

�� + 0.5
(10)

then Equation (2) can recover the Cahn–Hilliard equation with the second order of accuracy

�t� + ∇ · (�u) − �M∇2�� + O(�2) = 0 (11)

where the mobility is defined as

�M = q(��q − 1
2 )�� (12)

As shown in Equation (12), � is a parameter, which is proportional to mobility. The change of �
will lead to the change of mobility. The chemical potential in Equation (9) is related to the free
energy density functional which is taken as

F =
∫

dV
{
a(�2 − �∗2) + 	

2
(∇�)2

}
(13)

where �∗ is a constant which is related to the equilibrium state. By minimizing the free energy
functional, the chemical potential is calculated from the Euler–Lagrange equation [12]:

�� = a(4�3 − 4�∗2�) − 	∇2� (14)

To compute the second-order derivative term in the above equation, we apply the Taylor series
expansion:

�(x + ei�) − �(x) = ei� · ∇�(x) + 1
2 (ei� · ∇)2�(x) + 1

6 (ei� · ∇)3�(x) + O(�3) (15)
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Summation of the above equation gives

∑
i

[�(x + ei�) − �(x)] = ����(x)
∑
i
ei� + 1

2
�2�����(x)

∑
i

(ei�ei�)

+1

6
�3�����
�(x)

∑
i
ei�ei�ei
 + O(�3) (16)

Clearly, if the first-, second- and third-rank lattice tensors are isotropic, the second-order accuracy
of ∇2� can be achieved by the following approximation:

∇2�≈ 2

(�)2
∑

i (ei�)
2

∑
i

[�(x + ei�) − �(x)] (17)

There is no velocity-related terms in Equation (9). This shows that it does not require the fourth-rank
lattice tensor to be isotropic as needed by the conventional lattice Boltzmann methods. Based on
this analysis and Equation (17), we can draw a conclusion that the sufficient condition for a suitable
lattice velocity model is that the first-, second- and third-rank lattice tensors are isotropic. For the
three-dimensional case, the minimum number of lattice velocities that satisfies these conditions is
7 and the corresponding lattice velocity model is D3Q7 (D3 means three dimensional, Q7 means
seven velocity). Thus, D3Q7 is used in this paper. The discrete velocities of this model can be
taken as

e1 = (0, 0, 0)T, e2,5 = (±1, 0, 0)T, e3,6 = (0,±1, 0)T, e4,7 = (0, 0, ±1)T (18)

We can obtain the lattice tensors of this model as∑
i
ei� = 0

∑
i
ei�ei� = 2���

∑
i
ei�ei�ei
 = 0

(19)

It could be easily verified that the first-, second- and third-rank lattice tensors are isotropic. Thus,
the second-order derivative term in Equation (14) can be approximated by Equation (17) with
the second order of accuracy. Apart from the lattice velocity model, a lattice Boltzmann interface
capturing method should also satisfy the conservation laws given by Equations (7)–(9). To satisfy
all the conservation laws, we need to define a suitable equilibrium distribution function.

According to Equations (7)–(9), the equilibrium distribution function in Equation (3) can be
chosen as

f (0)
i = Ai + Bi� + Ci�ei · u (20)

The coefficients are taken as

A1 =−D���, Ai = 1

2
���(i �= 1), B1 = 1, Bi = 0 (i �= 1), Ci = 1

2q
(21)

where D is the dimension.
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Here, we would like to highlight the efficiency of our method in three-dimensional cases. As
we all know, each equilibrium distribution function is calculated in each time step. Thus, the
computational effort of the lattice Boltzmann method is approximately proportional to [NX ·NY ·
NZ · kp · istep], where NX, NY and NZ are the number of mesh points in the x , y and z direction,
respectively, kp is the number of lattice velocities in the velocity model and istep is the iteration
number. As kp is only 7 in our model as compared to 15 or even 19 other models, the efficiency of
our method is greatly improved. Apart from the improvement of efficiency, the memory requirement
is also reduced due to the use of fewer velocities in the velocity model.

To validate the proposed method, we compare our results with those of direction split flux-
corrected transport (FCT) VOF method [2]. The basic idea of one-dimensional FCT involves
the predicator step using a lower-order monotonic (and hence diffusive) advection scheme and
a corrector step with an anti-diffusive flux to correct the numerical diffusion resulting from the
low-order scheme. To extend it to multi-dimensions, there are two methods [2]. They are Zalesak’s
fully multi-dimensional FCT algorithm [15] and a direction split FCT. In practice, the direction
split FCT–VOF gives superior results. Thus, the direction split FCT (DSFCT) is adopted in this
paper. Here, we follow the idea of Rudman to give a simple extension from two dimensions to
three dimensions. It involves sweeping the entire mesh in each direction with the one-dimensional
algorithm followed by an updating step of the intermediate volume fraction. For example, in the
x-sweep time step, the predictor is

C∗
i, j,k =Cn

i, j,k − �t

�x
(FL(n)

i+1/2 − FL(n)
i−1/2) (22)

where Cn
i, j,k and FL(n)

i+1/2 are the volume fraction and the lower-order flux in time level n. �t and
�x are the time step and mesh spacing.

Then, a corrector is applied,

Cn+1/3
i, j,k = �V n

i, j,k

�V n+1/3
i, j,k

[
C∗
i, j,k − �t

�x
(AC(n)

i+1/2 − AC(n)
i−1/2)

]
(23)

where AC(n)
i+1/2 and �V n

i, j,k are the anti-diffusion term and the effective volume. The effective volume
is expressed as

�V n+1/3
i, j,k = �V n

i, j,k − �t�V n
i, j,k

(ui+1/2, j,k − ui−1/2, j,k)

�x
(24)

with

�V n
i, j,k = �x × �y × �z (25)

where �x , �y and �z are the spatial spacing in each direction. The order of these three direction
sweeps is interchanged each time step to avoid the introduction of systematic error.

3. RESULTS AND DISCUSSION

As shown in Equation (18), the particle velocity in the LBM computation is usually taken as 1.
So, the time interval � in the LBM equals to the spatial mesh spacing. In the present study, the
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computational domain is regular and the uniform mesh is used with �x = �y = �z = 1. So, � in
this work is always set as 1. This means that the lattice unit is always kept as 1 and the lattice
time is actually the time steps.

3.1. Verification

The profile along the normal direction of the interface [12] can be expressed as

�= �∗ tanh(±2�/W ) (26)

where the sign in the bracket is dependent on the initial condition of the problem, � is the coordinate
which is perpendicular to the interface, and the origin is at the interface with interface thickness:

W =
√
2	/a

�∗ (27)

In this section, we use a stable sphere case to verify Equation (26). Initially, a sphere is located at
the center of domain with the mesh size of 60× 60× 60. The order parameter is set to be −0.9�∗
inside the sphere and 0.9�∗ elsewhere (�∗ = 1). Periodic boundary conditions are employed at all
boundaries. The mobility can be regarded as a counterpart of Pe number for convection–diffusion
equation. Thus it will influence the stability of the scheme. As the mobility is related to �, the �
value is critical to the stability. Very small value of � may lead to unstable computation. In this
work, the parameters are set to be 	= 0.002, �= 0.4, a = 0.001 and �� = 0.7.

Figure 1. The interface profile.
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For this problem, the analytical interface profile can be expressed as

�=�∗ tanh
[
2

(√
(x − xc)2 + (y − yc)2 + (z − zc)2 − R

)/
W

]
(28)

where rc is the coordinate of the center of the sphere, and R is the radius of the sphere. We
draw the order parameter at all lattice points as a function of the distance from the center point
as shown in Figure 1. It shows that the order parameter is independent on the direction. Besides,
the numerical results are also compared with the analytical profile described by Equation (28).
As illustrated in Figure 1, the numerical order parameter profile (denoted by the symbol) agrees
with the analytic solution (the solid line) very well. Several cases are used to further evaluate our
method as follows.

3.2. Solid body rotation

In this section, we discuss about a designed solid body that is a combination of a spherical cap with
a cross slot as illustrated in Figure 2(a). In order to observe it clearly, we draw three different figures
as shown in Figure 2(b)–(d) viewing from three different directions. The computational domain is
a box with 0�i, j, k�120 (NX=NY=NZ= 120). The radius of the sphere is 48 and the width
of the bottom cross is 18 in lattice unit in both the x and y directions. The periodic boundary
condition is employed at all boundaries. The parameters are chosen the same as those in Section
3.1. Initially, the solid body is located at the center of the box. The order parameter is set to be

�(x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�∗ tanh d if z�0.5

−�∗ if z<0.5 and |x − xc|�0.075

and d�0.5 and |y − yc|�0.075

�∗ else

(29)

where d is defined as

d =
√

(x − xc)2 + (y − yc)2 + (z − zc)2 − R (30)

The objective of this section is to test whether the surfaces of the solid body can keep their shapes
under the rotational velocity field, which is taken in the lattice Boltzmann context as

u = 0, v =−u0�

(
k

NZ
− 0.5

)
, w = u0�

(
j

NY
− 0.5

)
(31)

It is obvious that this velocity field is a rotational field around the x-axis. As shown in the two-
dimensional calculation [12], the scale parameter u0 is a non-dimensional coefficient and is taken as
0.02 in the present computation to ensure that the computation is in the low Mach number range.

Firstly, we compare the efficiency of our method with other lattice Boltzmann methods such as
the approach of Inamuro et al. [9]. The total physical time, which is defined in Equation (33), is
remained as 2 s for all the cases. As stated in Section 2, the computational time is approximately in
the order of O[NX ·NY ·NZ ·kp · istep]. We only vary the mesh size to compare the computational
time between the present method and the approach of Inamuro et al. [9] on the PC with 2GB
RAM and 2.80GHz CPU. The computational time for the two methods is listed in Table I. It
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Figure 2. The initial configuration for the rotation case.

Table I. Computational time needed by the present method and the approach of Inamuro et al. [9].
Computational time (s)

Cases Mesh size Present method Inamuro et al. [9] approach Ratio

1 40× 40× 40 695 1548 2.227
2 120× 120× 120 55 742 124 873 2.24
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can be seen that the time needed by the present method is less than half of the time needed by
the approach of Inamuro et al. [9]. As the mesh size increases, the ratio of computational time
of present method to that of Inamuro et al. [9] increases from 2.22 to 2.24. This implies that the
method of Inamuro et al. [9] will cost more than two times of computational effort than the present
method. The reason may be due to the fact that 15 lattice velocities are used in the approach of
Inamuro et al. [9] while only seven lattice velocities are used in the present method. In addition,
the approach of Inamuro et al. [9] needs an approximation of both the first and second derivatives
in the equilibrium distribution functions.

To evaluate the present method, we also compare our results with those of DSFCT VOF. The
corresponding physical velocity field (the unit is m/s) is taken as

uphys = 0, vphys =−�(zphys − 0.5), wphys = �(yphys − 0.5) (32a)

and the physical domain (the unit is meter) is chosen as

xphys, yphys, zphys ∈ [0, 1] (32b)

To make a fair comparison, we need to get the relationship between the physical time tphys and the
lattice time t . To achieve this, we need to obtain the reference length L ref and the reference velocity
Uref from the physical frame to the lattice Boltzmann frame first. By comparing Equation (32a)
with Equation (31), we can easily obtain Uref as Uref = 1/u0. On the other hand, since the mesh
spacing in the lattice Boltzmann frame is always taken as 1, its computational domain is 0�x�NX,
0�y�NY, 0�z�NZ. As shown in Equation (32b), the physical domain is a unit box. So, the length
scale L ref is L ref = 1/NX for the case of NX=NY=NZ. The physical time can be computed by

tphys = L ref

Uref
t = u0

NX
t (33)

With u0 = 0.02 and NX= 120, it is clear that 6000 time steps (lattice time) in the present compu-
tation correspond to 1 s of physical time. Numerical results of DSFCT VOF and present method
at 2 s (physical time) are shown, respectively, in Figures 3 and 4. For this problem, there is an
analytical solution for the interface position and the direction of the bottom cross. That is, the
direction of the bottom cross should go to a certain angle and the sphere should keep its shape as
the initial state after one rotation. From Figures 3 and 4, it can be easily observed that the direction
of the bottom cross obtained by the two methods agrees well with the analytical one. However,
there are some differences for the details of interface. As can be seen from Figure 3, many slots
appear around the surface of the bottom cross in the results of the DSFCT VOF method. Besides,
the shape is not very smooth at the spherical surface. This indicates that DSFCT VOF gives a
poor interface tracking. In contrast, Figure 4 shows that the present method generates accurate
results except for some convex circular slots appeared in the links between the spherical cap and
the bottom cross. Thus, we can conclude that the present method performs better than the DSFCT
VOF method for this case.

3.3. Elongation

As shown in Equation (31) of Section 3.2, the solid body rotation does not induce topological
deformation because the velocity gradient in each direction is zero for the case. In this section,
we try to introduce a non-zero velocity gradient in each direction. That is, the interface evolution
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Figure 3. The results of the direction split FCT VOF method for the rotation case.

under elongation velocity field is considered:

u = u0�

(
i

NX
− 0.5

)
, v = u0�

(
j

NY
− 0.5

)
, w = −2u0�

(
k

NZ
− 0.5

)
(34)

where u0 is the scaled parameter and is taken as 0.02, NX is the number of mesh points in the
x direction. Like the previous example, the scaled parameter u0 is used in the present compu-
tation to ensure that the computation is in the low Mach number range. Equation (34) indicates
that the sphere is stretched under one direction and contracted in other two directions. That is,
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Figure 4. The results of present method for the rotation case.

unlike the rotational case, there is a preferred direction in the velocity field. The objective of this
study is to check whether the shape will return to the original one under a certain topological
deformation.

The computational domain is a box with 0�i, j, k�120. Initially, a sphere is located at the
center of the box as shown in Figure 5(a). The order parameter is set to be �∗ inside the sphere
and −�∗ elsewhere, and

�=�∗ tanh d (35)
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Figure 5. The initial conditions: (a) elongation case and (b) shear flow case.

where d is the same as that shown in Equation (30). The radius of the sphere is 24 in lattice unit.
The natural boundary condition is employed at all boundaries. The parameters are chosen the same
as those in Section 3.1.

When the physical velocity field (the unit is m/s) is taken as

uphys = �(xphys − 0.5), vphys = �(yphys − 0.5), wphys =−2�(zphys − 0.5) (36)

and the physical domain (the unit is m) is chosen as

xphys, yphys, zphys ∈ [0, 1]
we can get a similar relationship between the physical time tphys and the lattice time t (NX=NY=
NZ) as

tphys = u0
NX

t (37)

With u0 = 0.02 and NX= 120, it is clear that 6000 time steps in the present computation correspond
to 1 s in other methods. To evaluate our method, we also compare our results with those of DSFCT
VOF method. After one cycle of contraction in the z direction and elongation in the other two
directions, we adjust the elongation and contraction direction by changing the sign of the velocity
field and continue to run the code for another cycle. We try to see whether the sphere would
return to its initial state after a complete cycle. From Figures 6(a) and (b) and 7(a) and (b), we
can observe that the shape of the body changes from the sphere to a flat disc in the contraction
cycle in the z direction. In contrast, during the expansion process in the z direction, the flat disc
would return to the sphere as shown in Figures 6(c) and (d) and 7(c) and (d). Besides, the process
is reversible. This could be true as we can observe that the shapes in Figures 6(a) and 7(a) agree
well with those in Figures 6(c) and 7(c). On the other hand, although the present method and the
DSFCT VOF approach give the similar results, there are still some differences. From Figure 6, we
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Figure 6. The results of the direction split FCT VOF method for the elongation case.

can easily observe that there are many noises shown in the results of DSFCT VOF method. That
is, the shapes are not as smooth as those of the present method. This indicates that DSFCT VOF
gives a poor interface tracking. In this sense, we can say that the present method performs better
than the VOF method for this test case.

3.4. Shear flow

In this section, we consider a more realistic case, a sphere under the shear flow. As compared to
the elongational velocity field, the velocity gradient in each direction is not a constant in this case.
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Figure 7. The results of present method for the elongation case.

Again, the computational domain is taken as a box with 0�i, j, k�120. Initially, the sphere with
the radius of 20 is located at the bottom part of the box. The center of the sphere is (60, 60, 36) as
shown in Figure 5(b). Periodic boundary conditions are employed at all boundaries. The parameters
are also chosen the same as those in Section 3.3, and the order parameter is set to the same as
given by Equation (35).
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Figure 8. The results of the direction split FCT VOF method for the shear flow case.

During the process before one rotation cycle T , the shear velocity in the LBM computation is
given as

u = u0� cos

[
�

(
i

NX
− 0.5

)] {
sin

[
�

(
j

NY
− 0.5

)]
− sin

[
�

(
k

NZ
− 0.5

)]}

v = −u0� cos

[
�

(
j

NY
− 0.5

)]{
sin

[
�

(
i

NX
− 0.5

)]
− sin

[
�

(
k

NZ
− 0.5

)]}
(38)
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Figure 9. The results of present method for the shear flow case.

w = −u0� cos

[
�

(
k

NZ
− 0.5

)]{
sin

[
�

(
j

NY
− 0.5

)]
− sin

[
�

(
i

NX
− 0.5

)]}

When the physical velocity field (the unit is m/s) is taken as

uphys = � cos[�(xphys − 0.5)]{sin[�(yphys − 0.5)] − sin[�(zphys − 0.5)]}
vphys = −� cos[�(yphys − 0.5)]{sin[�(xphys − 0.5)] − sin[�(zphys − 0.5)]} (39)

wphys = −� cos[�(zphys − 0.5)]{sin[�(yphys − 0.5)] − sin[�(xphys − 0.5)]}
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Figure 10. The results from the method of Inamuro et al. [9] for the shear flow case.

and the physical domain (the unit is m) is

xphys, yphys, zphys ∈ [0, 1]
we can obtain a similar relationship between the physical time tphys and the lattice time t (NX=
NY=NZ) as

tphys = u0
NX

t (40)

In the present computation, u0 = 0.01 and NX=NY=NZ= 120. Thus, 12 000 time steps corre-
spond to 1 s in other methods. After one rotation cycle, we adjust the rotation direction by changing
the sign of the velocity field and continue to run the code for another cycle T . We are interested to
see whether the shape of sphere would return to its initial configuration and whether the process
is reversible.

To validate the present method, the DSFCT VOF and the approach of Inamuro et al. [9] are
also applied to solve this problem. The results of DSFCT VOF are displayed in Figure 8. From
Figure 8, it is obvious that the DSFCT VOF method shows quantities of slots at the interface and
jetsam near the interface. We can also easily observe that there are some breakups in Figure 8(c).
Besides, the shape in Figure 8(c) does not agree with that in Figure 8(a). This is different from the
case in Section 3.3, where the shape in the backward evolution process is similar to the forward
one. The present results are shown in Figure 9. Clearly, the shape in Figure 9(c) agrees well with
that in Figure 9(a). This implies that DSFCT VOF method may not be suitable to the cases with
large deformation. Furthermore, as shown in Figure 8(d), there are many disturbances generated by
DSFCT VOF method. The shape is greatly deformed after the whole process and does not recover
the initial configuration. In contrast, the sphere returns to its original shape and position with a
little distortion as shown in Figure 9(d) by the present method. This implies that the present method
performs very well even for the case where large deformation occurs. The result from the method

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1653–1671
DOI: 10.1002/fld



THREE-DIMENSIONAL LATTICE BOLTZMANN INTERFACE CAPTURING METHOD 1671

of Inamuro et al. [9] at 3000 time steps is shown in Figure 10. We can observe clearly from the
figure that some unphysical disturbances appear near the boundary even though the computation
only marches 3000 time steps. If we continue to do the simulation, the disturbances will expand
until the sphere and the disturbances coalesce together eventually. By comparing the results in
Figures 9 and 10, we can conclude that the present method performs much better than the approach
of Inamuro et al. [9] for the deformation of interface under shear flow.

4. CONCLUSIONS

A new three-dimensional lattice Boltzmann interface capturing method is proposed in this paper.
It does not require interface reconstruction as needed by most of the traditional methods. The
computational time cost by the present method is about half of the time needed by other lattice
Boltzmann interface capturing methods. We can conclude that the present method has a better
efficiency than most of the existing lattice Boltzmann methods since it only uses seven lattice
velocities while other methods use at least 15 lattice velocities. Numerical results show that
the present method can capture accurate position of the interface. For example, it shows good
performance under elongation and shear flow with stretching and tearing. For all the test cases
considered, the present method has a better performance than the DSFCT VOF method and the
approach of Inamuro et al. [9].
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